Jetzt anmelden Zum Login
Bücherregal lädt …
The Subtle Art of Not Giving a F*ck
 224 Seiten

Plus: The audiobook has a great narrator. At the core, this book has a set of substantial ideas and truths.

Not for me: I became tired of the constant "fucks" very quickly. I feel like I have outgrown this youthful language (in a boring way, not in an "I'm too classy" way).

I think this book can be a great pointer to recalibrate the values in your life. Personally, I just didn't like the packaging.

Blaue Nacht
 280 Seiten

Bin auf das Buch aufmerksam geworden, weil die Autorin im Nachbarschaftsfernsehen meiner Wahl auftauchte und sympathisch wirkte.

Gut: Hamburger Umgebung einer Hamburger Autorin. Als Krimi entspannt weg zu lesen. Sprachlich war ab und zu mal was cleveres dabei.

Nicht so meins: Ich wurde irgendwie nicht krimimäßig gepackt. Die authentische St. Pauli Atmosphäre war mir auf Dauer etwas zu viel (rauchen ist noch cool & Kaputtsein hat seinen Charme).

↑ 2022
2021 ↓
Artificial Intelligence
 336 Seiten

A great (layperson's) overview of the current state of the field of A.I., with an introduction to the technology, a summary of the limitations, and some pointers to more literature. A great introduction to everyone who doesn't necessarily want to learn how to build AI themselves, but wants to understand the core technology. It's not the best format for an audiobook, though: The narrator's voice is a little monotonic and there are many references to the 40+ figures in the book that don't come across when you only listen to the audio.

& Rebuilding Reliable Data Pipelines Through Modern Tools
 97 Seiten

Kompakte Übersicht über das Thema "Data Engineering": Was bedeutet es, eine "Data Pipeline" aufzubauen, worauf muss man achten? Prinzipiell interessant, aber leider bleibt der Autor sehr unkonkret und nennt wenig echte Beispiele. Für Entwickler:innen ist es meiner Meinung nach zu abstrakt, für "Manager:innen" setzt es dann doch zu viel technisches Verständnis voraus. Ich verstehe die Zielgruppe nicht so richtig, ich selbst war zumindest nicht Teil davon. Naja, es war ein kostenloses ebook, dafür war es okay.

The Infinite Machine
 352 Seiten

A book about the origin story of Ethereum. I read this as a way to challenge my assumption that a) cryptocurrencies are pointless hype and b) that anyone who says 'crypto will revolutionize the world' just uses this as an excuse to speculate in 'get rich.

I understand now that ethereum does have a very interesting core idea: a distributed computer that you can run "code" on, which typically means creating a token that has certain effects when it is bought or sold. Alright, not completely pointless then. I am still not convinced that any of the distributed applications that I've heard of actually need to be implemented that way. Big money speculation seems to be the primary driver, still in 2021. So there is definitely a big hype that still needs to settle down to see what role this technology will play in the future.

In any case, the (audio) book was a pleasant narration of the story and I liked it.

 424 Seiten

A political thriller set in an alternative post-war Berlin where the Nazis had won the war. This was Robert Harris‘ first novel after he had researched the stories of the forged Hitler Diaries in the 1980s. He clearly succeeded in mixing history and fiction – I for one was quite captivated by the story.

Im schwarzen Wasser
 432 Seiten

Ich wollte für den Urlaub einen entspannten und leichten Krimi lesen, und das war das Buch dann auch.

Gut: Die Atmosphäre des historischen Hamburg in den 1770er Jahren, Einblicke in das Handwerk der Gerberei, gut runter zu lesen.

Mochte ich nicht so: Zu keinem der Charaktere (ob tot oder lebendig) habe ich so richtig eine Beziehung aufgebaut. Die Erkenntnisse der Ermittlungen wirkten eher zufällig. Ein Spannungsbogen hat sich für mich nicht aufgebaut.

, & Machine Learning Design Patterns
 408 Seiten

This was the book I needed to take me one step further: From just knowing "how to train a neural network" to a better understanding of "MLOps", including training workflows, aspects of scalable serving, and reproducibility.

The three authors are employed at Google and it shows in many chapters: The example of choice is always a Google Cloud AI offering or a Tensorflow code snippet. They do make an effort to also mention competitor products and open source alternatives. Because their insight from Google provided them with this wide range of best practices, I won't hold any of this against the book.

The book isn't without its flaws, though. This (recent) first edition has a number of distracting errors (such as misleading numbers in figures and weird code indentation), plus the greyscale print makes it hard to read many of the figures. That fact cost the book its fifth star. A 2nd edition will probably catch up once it irons out these issues.

I for one will keep this book on my shelf for future reference. It's a great collection of best practices to move a team and an organization ahead in terms of "AI readiness".